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A simple and sufficiently accurate computation of the transport coefficients (the vis- 
cosity and heat conductivity coefficients for gas and plasma mixtures) in a broad range of 
temperatures and pressures acquires practical value in the solution of physicochemical hydro- 
dynamics problems, particularly, supersonic aerodynamics and heat transfer problems. The 
fact is that the formulas of the strict kinetic theory of gases for the transfer coefficients 
[1-3] derived in the asymptotic limit of small Knudsen numbers remain sufficiently compli- 
cated for the solution of specific hydrodynamic problems despite their substantial simpli- 
fication obtained in [2]. The formulas are represented in the form of the ratio of deter- 
minants of order Ng, where N is the number of mixture components and $ is the number of the 
approximation (the number of terms in the expansions of the desired transfer coefficients 
in Sonine polynomials [2]). This results in the fact that for the solution of flow problems, 
say, computation of the transfer coefficients by using these formulas, occupies a large 
portion of the time than the time for a numerical solution of the differential equations 
themselves [4]. Consequently, in practice all computations of transfer coefficients in 
multicomponent gas and plasma mixture flow problems are performed by using different approxi- 
mate formulas. Computations of just some transfer coefficients by the strict formulas of 
kinetic gas theory in the first approximations different from zero [I] for constant given 
element concentrations without the solution of any problems [5] were performed for the vis- 
cosity and heat conductivity of a H 2 -He mixture (Jupiter atmosphere), for the viscosity 
and heat conductivity of air (earth's atmosphere) in [6], for the viscosity of a CO 2-N 2 
mixture (Venus atmosphere) in [7]. All the equilibrium transfer coefficients for partially 
dissociated and ionized air were first calculated in [8] by means of formulas [2, 9] up to 
the fourth approximation inclusive. 

Evaluation of the transfer coefficients by the exact formulas of kinetic gas theory is 
associated with the necessity to know thecollision integrals between the different mixture 
components. Each interaction requires knowledge of the potential interaction function, and 
(I/2)N(N + I) potential functions are required for an N-component mixture. The existing 
spread in data on particle interaction potentials [I0, ii] in the area of ionization develop- 
ment results in uncertainty in the value of the effective equilibrium heat conductivity coef- 
ficient of up to 30%, and the uncertainty in the values of the viscosity coefficient is of the 
same order [12, 13]. At the same time the error in the transfer coefficients has slight in- 
fluence on the accuracy of the calculation of the integral aerodynamic and thermal character- 
istics. Thus, the uncertainty in the transfer coefficients in the solution of supersonic 
flow problems around a sphere by air in chemical and ionization equilibrium within the frame- 
work of the complete viscous shock layer equations results in an uncertainty 5-10 times less 
in the value of the convective heat flux to the body [13]. Therefore, there is a foundation 
to assume that replacement of the exact by approximate computation in evaluation of the trans- 
fer coefficients will not result in substantial uncertainty in the integral flow character- 
istics. All the above does not remove the doubts about the expediency and practical necessity 
of obtaining simple approximate formulas for the transfer formulas of gas and plasma mixtures. 

A whole number of approximate formulas have been proposed in the literature for the 
viscosity [13-19] and heat conductivity [19-24] coefficients. Most extensively utilized in 
heat transfer problems is the Wilke formula [16] for the viscosity and the Mason and Sexena 
formula [21] for the thermal conductivity. However, the accuracy of these formulas becomes 
unsatisfactory upon the appearance of ionized components in the mixture [25]. In this con- 
nection, new approximate formulas for the viscosity and heat conductivity coefficients are 
proposed in [26, 27] on the basis of numerical computations [6], that improve the formulas 
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[16, 21] in the ionization domain but yields noticeable error as compared with the data of 
[6] which differ, in turn, from the exact data [8] by approximately 15% for the viscosity 
and ~60% for the thermal conductivity. 

On the basis of expressions for the viscosity and thermal conductivity coefficients in 
the first nonzero approximations [see (i.i), and (1.2)] in which nondiagonal elements are 
later discarded, and exact expressions for the ionic viscosity and electronic thermal con- 
ductivity within the full ionization limit, approximate formulas are derived in this paper for 
the viscosity and transport thermal conductivity coefficients (due to translational degrees 
of freedom of a components) for partially dissociated and ionized air that yields good agree- 
ment with the results of exact computations with higher approximations taken into account [8]. 

i. Let us consider the exact expressions for the viscosity and transport thermal con- 
ductivity coefficients in the first nonzero approximation (for seeking transfer coefficients 
in the form of series in Sonine polynomials) [i]: 
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Here m i and x i are the molar mass and concentration of the components, ~i (Pa.sec) and h i 
(W/mK) are the viscosity and thermal conductivity coefficients of the pure i-th component; 
pij (Pa.sec) and hij (W/mK) are the auxiliary viscosity and thermal conductivity coefficients 
that are analogs of the binary diffusion coefficients, ~i/8), are relative collision integrals 
of order (s s) governing the distinction between some particle interaction model and the 
idealized solid sphere model [i], and oij is the diameter of the gaskinetic i - j collision. 

For mixtures of neutral monatomic gases with molar masses of the same order, taking ac- 
count of just the lower expansions in the Sonine polynomial expansions at temperatures above 
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room and below dissociation temperatures results, as a rule, in not more than a ~0.3% error 
for the viscosity coefficient and a ~0.5% error for the thermal conductivity coefficient. 

As follows from computations by the exact formulas of kinetic gas theory with higher 
approximations taken into account for the dissociated and partially ionized air (x E ~ 0.4), 
the viscosity coefficient ~($) can be calculated with an ~1% error in a first approximation 
(g = i). For strongly ionized airx E > 0.4) the viscosity coefficient computation in a first 
approximation results in up to ~15% error, however, the second approximation already turns 
out to be sufficiently exact, a further increase in ~ has no effect on the accuracy of com- 
puting ~ within ~1% limits [8]. 

Values of the thermal conductivity coefficient X($) of partially dissociated and ionized 
air, computed in the second, third, and fourth approximations for a p = 103-107 Pa.sec pres- 
sure and temperatures 5000 to 20,000 K in [8] show that the second approximation (i.e., the 
first nonzero approximation) has ~1% accuracy in the low temperature domain (T 5 6000 K) while 
the thermal conductivity coefficient, calculated in the second approximation ($ = 2), differs 
from that computed in the third approximation by approximately 60%. The fourth approximation 
refines the third by ~1-2%. Consequently the thermal conductivity coefficient must be com- 
puted in at least the third (second nonzero) approximation. 

However, when obtaining approximate formulas for the transfer coefficients that agree 
with the exact computations in higher approximations, expressions in the lowest nonzero 
approximations and limit formulas for full ionization are taken as basis, the corrections 
introduced by the higher approximations are taken into account by extracting weakly varying 
quantities in the initial expressions and replacing them by effective coefficients selected 
empirically from a comparison with the exact computations in appropriate approximations. 

2. We start from (i.i) and (1.2), which can be represented in the form of the series [i] 
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to obtain approximate formulas for u and k. Detailed computations [5, 28] showed that Hij << 
Hii and Lij << Lii (i ~ j). Consequently, we take 
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I t  i s  s e e n  f rom t h e  c o m p u t a t i o n s  t h a t  t h e  f u n c t i o n s  A~j in  ( 1 . 1 0 )  depend weak ly  on t h e  
t e m p e r a t u r e  b u t  a r e  g e n e r a l l y  d i f f e r e n t  f o r  d i f f e r e n t  k i n d s  o f  i n t e r a c t i o n s .  The f u n c t i o n s  
B~j in  ( 1 . 1 1 )  a l s o  depend weak ly  on t h e  t e m p e r a t u r e .  I t  f o l l o w s  f rom t h e  a n a l y s i s  o f  t h e s e  
c o g f f i c i e n t s  t h a t  in  p r a c t i c e  1 s B~j 5 1 .5  w i t h i n  a b ro ad  r a n g e  o f  v a l u e s  o f  t h e  p r e s s u r e  
and t e m p e r a t u r e  f o r  a l l  k i n d s  o f  i n t e r a c t i o n s  ( t h e  c o l l i s i o n  i n t e g r a l s  were  t a k e n  f rom [10,  
1 1 ] ) .  The v a l u e  B ~  = 1 .25 was u sed  in  [27] f o r  a l l  i ,  j p a i r s .  In  t h i s  c a s e  t h e  e x p r e s -  
sions for Lij and g[i simplify 
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The functions Qij depend strongly on the temperature and the (i, j) pairs of interacting 

components. Consequently, in [26] it is proposed to express oij in terms of the collision 
diameter and the viscosity coefficients ~i (or thermal conductivity Xi) of pure gases 
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(C~, C= are constants dependent on the dimensionality of the quantities). 
into (1.9), and then (1.9) into the expressions for ~ij and %ij, we obtain 
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The advantage  of  ( 2 . 8 )  and ( 2 . 9 )  over  t he  formulas  ( 1 . 7 )  and ( 1 . 8 )  f o r  ~ i j  and ~ i j  i s  t h a t  
F i j  and Bij  a re  weakly v a r y i n g  f u n c t i o n s  of  the  t e m p e r a t u r e  and can be s e t  equa l  to  c o n s t a n t s  
f o r  t he  m a j o r i t y  of  i n t e r a c t i o n  p a i r s .  S u b s t i t u t i n g  ( 2 . 8 )  and ( 2 . 9 )  i n t o  (2 .3 )  and ( 2 . 4 ) ,  
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For interactions of neutral atoms and molecules A~j = 5/3. Consequently, if we set A~j = 5/3 
and Fi j  = Bij  = 1, then  (2 .11 )  goes over  i n t o  t he  e x t e n s i v e l y  u t i l i z e d  approx imate  Wilke f o r -  
mula [161 
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But if we set Aij = 5/2, Fij = Bij = I, then we obtain the Mason and Saxena approximation 
formula for gas mixtures with nearby values of the molar weights (m i = mj) [21] 
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I t  i s  shown in [25, 27] t h a t  computa t ions  us ing  (2 .14 )  and (2 .15 )  ag ree  p o o r l y  wi th  t he  
r e s u l t s  of  e x a c t  computa t ions  by means of  ( 1 . 1 )  and ( 1 . 2 )  f o r  t e m p e r a t u r e  v a l u e s  c o r r e s p o n d i n g  
to  deve loped  d i s s o c i a t i o n  and the  beg inn ing  of  i o n i z a t i o n .  The a u t h o r s  of  t h e s e  papers  recom- 
mended t he  f o l l o w i n g  va l ue s  of  h~ j ,  F i j ,  and Bij  in  t he  case  of  s i n g l y  i o n i z e d  a i r  on t he  
b a s i s  of  an a n a l y s i s  of  the  c o l l i s i o n  i n t e g r a l s  [6, 7 ] . ( l e t  us no te  t h a t  H, He, and C were 
among t he  e lements  O, N, andE examined in  [25, 27 ] ) :  h~j = h~i = 1.0 f o r  a l l  i n t e r a c t i o n s  
except interactions of atomic ions with their atoms of the same name for which it was recom- 
mended to set A~_N+ = Ag_o+ = i.i, Fij = Fji = 1.0 for all interactions, Bij = Bji = 0.2 for 

interactions of atoms and molecules with electrons (A-E, M-E), Bij = Bji = 0.15 for atoms and 
molecules interacting with ions (A-I, M-I), Bij = Bji = 0.78 for mutually interacting neu- 
trals (A-A, A-M, M-M), and Bij = Bji = 1.0 for all other interactions (I-I, I-E, E-E). 
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. 

the form 

selection of the quantities A~j, Fij, and Bij the formulas (2.11) and (2.12) For such a 

yield substantially better results than the Wilke formula (2.14) [16] and the Mason-Saxena 
formula (2.15) [21]. At the same time our numerical computations showed that at high temper- 
atures corresponding to the beginning of ionization, the discrepancy between the results of 
the exact computations in a second nonzero approximation [8] and the approximate formulas 
(2.11) and (2.12) can be up to ~40% for B and ~30% for X with the above-mentioned numerical 
values of the effective coefficients A[j, Fij, Bij. 

In this connection, the question of the possibility of obtaining more exact approximate 
formulas for the viscosity and transport thermal conductivity coefficients of partially ion- 
ized air which would yield a minimum deviation from the results of exact computations ob- 
tained with high approximations taken into account [8]. 

Let us note that the diagonal elements Hii (1.3) and Lii (2.6) can be represented in 
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Here the same approximation was utilized in the assumption of smallness of the nondiagonal 
terms Hik ~ Hii, Lik <<Lii (i ~ k) as when obtaining the expressions (2.3) and (2.4). Substi- 
tuting (3.1) into (2.3) and (3.2) into (2.4), we obtain as a result of evident manipulation 
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Here N n is the number of neutral components. It follows from the expressions for the vis- 
cosity and thermal conductivity of pure gases (1.7) and (1.8) that the electron component 
can be neglected in multicomponent viscosity coefficient [third component in (3.3)] and the 
ionic component in the multicomponent transport thermal conductivity coefficient [the second 
component in (3.4)] since m E ~ m k (k ; E). 

In the case of a fully singly-ionized plasma in the absence of a magnetic field, the 
ionic viscosity BI (Pa.sec) and electron thermal conductivity X E (W/mK) are evaluated from 
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the formulas [29] 
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Here m E (kg), e are the electron mass and charge, ~0 is an electrical constant, k is the 
Boltzmann constant, T is the temperature of the translational degrees of freedom of the 
heavy components, and T E is the electron temperature while x I is the total ion concentration. 

Computations show that for large degrees of ionization the second component in (3.3) can 
be replaced by the expression 
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where the value of the numerical factor [taking (3.7) into account] is selected empirically. 

In sum, the following approximate formulas are assumed for evaluation of the viscosity 
and transport thermal conductivity coefficients of partially dissociated and ionized air: 
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The matrix Gik [see (3.5)] is nonsymmetric, here the nondiagonal elements GMM = GAA = 1.05, 
~, = 0.78, the remaining Gik = 2.15 (the order of the components was: 02, N2, NO, O, N, O +, 

NO +, O~, N~, E). The nondiagonal elements are converted in the evident manner 

Ghi = G~k ~ = G,k = G~ ( 3.12 ) 

The matrix A~k [see (i. I0)] is symmetric: A~M = A~A = 2.5, A~E = 5.2 and the remaining A~k = 
2.3. 

It is well known that for a high degree of ionization the electrons can yield the main 
contribution to the transport thermal conductivity coefficient of a mixture and for good 
conformity with the exact computation for developed ionization in (3.11) for X the additional 
term XEXE was introduced that takes account of the correction introduced into the thermal 
conductivity coefficient by the second nonzero approximation. Only after this was good agree- 
ment with the results of exact computations of Alk (3) achieved successfully by variation 
of the coefficients A~k. [The coefficients Gik were here assumed the same as in (3.10).] 

4. Values of the viscosity and transport thermal conductivity coefficients of chemi- 
cally and thermodynamically (T E = T) equilibrium-dissociated and ionized air are presented in 
Figs. 1-4 as a function of the temperature (103K<~ T~T*, T* is the temperature correspond- 
ing to the mode of full single-ionization) for 102 and l0 s Pa.sec pressures, here the solid 
lines are the exact computations [8], the dashes are computations by using (3.10) and (3.11) 
with the above-mentioned values of Gik , A~k (the dashed and solid lines in Fig. 1 are in 
agreement in practice in the whole temperature range under consideration), the points 1 are 
computations using the Armaly and Sutton formulas (2.11) and (2.12) with their recommended 
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values of Fij, Bij, and A~j and 2 are computations using the Wilke formula (2.14) and the 
Mason-Saxena formula (2.15). 

Computations showed that the deviation of the values of ~ and X obtained by using (3.10) 
and (3.11) from the exact computations is ~2% in the area of the beginning of dissociation 
(103 K ' ~ T ~ < 6 . 1 0  3 K) .  For high temperatures the discrepancy from exact computations does 
not exceed ~6% up to the mode of full single ionization for the pressures p = 102 , 10 s , 104 , 
105 , 106 Pa.sec. It is seen from the figures that the Wilke and Mason-Saxena formulas yield 
an ~50-70% error for developed dissociation. The Armaly and Sutton formulas are substantially 
more accurate, however, for a significant degree of ionization the deviation from the exact 
computation can be up to ~40% for ~ and ~30% for X. Computations by the Wilke and Mason- 
Saxena formulas were in good agreement with the exact computations just for relatively low 
temperatures. The Wilke and Mason-Saxena formulas were proposed in their time for computations 
of the properties of nondissociated gases and were confirmed in inert gas mixtures. Conse- 
quently, their interpolation in the high temperature range yields a large error. Armaly and 
Sutton relied on computations [6] that differ by 10% from the exact [8] for developed dissocia- 
tion and by ~15% (~) and ~60% (X) for full dissociation and developed ionization because of 
utilization of the lowest approximations. But even with the data of [6] the computations 
using the Armaly and Sutton formulas diverge by more than 10%. 

Therefore, on the basis of exact computations simple semiempirical formulas are obtained 
for determination of the viscosity and transport thermal conductivity coefficients (due to 
energy transfer by translational degrees of freedom of the components) of a mixture that per- 
mits diminution of the machine time expenditure for the solution of complex gasdynamic prob- 
lems. The discrepancy from the results of exact computations is here ~1-2% in the low tem- 
perature range, not more than 3% in a broad range of temperatures and pressures and only 
reaches 6% in a narrow transitional domain. The form of the expressions (3.10) and (3.11), 
the independence of the given approximation coefficients Gik and Alk on the temperature and 
pressure as well as the good correspondence with exact numerical computations for the pressure 
values in an interval of several orders, yields a foundation for assuming that (3.10) and 
(3.11) can be used with good accuracy for an arbitrary chemical composition of dissociated 
and ionized air. 
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Separate investigations are evidently required for other gas mixtures. However, the 
approach proposed by Armaly and Sutton and developd in this paper can apparently be used for 
a sufficiently broad class of gas and plasma mixtures. Briefly, the main ideas of this ap- 
proach can be formulated as follows: i) expressions for ~ and k of the gas mixtures in a 
first nonzero approximation are taken as basis; 2) the quantities Hij, Lij (i ~ j) are 
neglected everywhere in these expressions; 3) terms taking account of the electron viscosity 
and ion thermal conductivity are discarded in the formulas obtained; 4) by using asymptotic 
expressions for ~ and % [29] the emergence at the exact value "is shortened" in the case of 
full single ionization; 5) quantities slightly dependent on the temperature and pressure are 
extracted, and replaced by effective numerical coefficients that are selected empirically 
from a comparison with the results of exact computations. 
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RESISTANCE OF A BODY WITH AN INTRINSIC MAGNETIC FIELD IN A SUPERSONIC 

FLOW OF A PARTIALLY IONIZED GAS 

V. V. Gubin and V. A. Shuvalov UDC 533.95:538.4:537.523 

The presence of an intrinsic magnetic field substantially alters the nature of the flow, 
the structure of the perturbed zone, and the charged particle distribution of a body surface 
in supersonic rarefied plasma flow [i]. A system of currents or permanent magnets can be 
the source of the magnetic field of the body. The decisive influence of the self-consistent 
field on the charged particle distribution in the neighborhood of bodies with an intrinsic 
magnetic field is clarified in [i, 2] for Pe ~ R ~ Pi (R is the characteristic body dimen- 
sion, and p~ is the Larmor radius of particles of the species ~). The perturbations induced 
by the intrinsic magnetic field result in a change in the functional characteristics of dif- 
ferent systems and singularities of dynamic body interaction with the flow. Results of an 
approximate numerical solution of the problem of MHD-interaction of a body with a supersonic 
rarefied plasma flow [3, 4] indicate the possibility of controlling the forces acting on the 
body, the change in heat elimination to the surface. Experimental data are scarce, limited 
to a narrow band of interaction parameters, and do not take account of the influence of the 
body surface geometry [5, 6]. Results of an experimental investigation of the influence of 
the intrinsic magnetic field on resistance of bodies of simple geometric shape (disc, sphere, 
cylinder, cone) are presented in this paper. Dependences of the body frontal drag coeffi- 
cient on the magnetic field intensity are determined for:U~ll H and U= i H (U=, and R are the 
flow velocity and magnetic field intensity vectors). The possibility of an effective MHD 
deceleration of bodies in a supersonic rarefied plasma flow is given a foundation. 

i. Experiments were performed in a plasma gasdynamic installation in a partially ion- 
ized nitrogen flow generated by a gas-discharge accelerator with ionization of the working 
body by electron impact and plasma "self-acceleration." The diagram of the installation is 
presented, in principle, in [7]. An accelerated plasma flow entered the working chamber, in 
which the residual gas pressure was ~i0 -s Pa. Evacuation was realized by a vacuum electro- 
discharge unit of AVED-40/800M type and a turbomolecular pump of TMH-500 type. The rarefied 
plasma flow parameters at the ~10-z-10 -~Pa working pressures in the chamber were measured 
by using mobile electrical probes and a multielectrode probe analyzer. Measurement of the 
current -voltage characteristics and the derivatives of the probe current was performed in 
the automatic mode. The scheme of probe measurements with current -voltage characteristics 

Dnepropetrovsk. Translated from zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 50-55, January-February, 1990. Original article submitted June 6, 1988; revision sub- 
mitted September 23, 1988. 

0021-8944/90/3101-0047512.50 �9 1990 Plenum Publishing Corporation 47 


